

Abstracts

Bias-Dependent Microwave Characteristics of Atomic Planar-Doped AlGaAs/InGaAs/GaAs Double Heterojunction MODFET's (Short Papers)

Y.K. Chen, G.W. Wang, D.C. Radulescu, A.N. Lepore, P.J. Tasker, L.F. Eastman and E. Strid.

"Bias-Dependent Microwave Characteristics of Atomic Planar-Doped AlGaAs/InGaAs/GaAs Double Heterojunction MODFET's (Short Papers)." 1987 Transactions on Microwave Theory and Techniques 35.12 (Dec. 1987 [T-MTT] (1987 Symposium Issue)): 1456-1460.

Double heterojunction AlGaAs/InGaAs/GaAs modulation-doped field effect transistors (MODFET's) using lattice-strained AlGaAs/InGaAs/GaAs layer structure have been fabricated and evaluated at microwave frequencies for various bias conditions. MODFET's with a 1- μ m gate length show a room-temperature peak extrinsic dc transconductance ($g_{\text{sub m}}$) of 400 mS/mm with a full channel current of 610 mA/mm. For 0.3- μ m-gate MODFET's an extrinsic dc $g_{\text{sub m}}$ of 505 mS/mm and a full channel current of 720 mA/mm were obtained. Devices having a 1- μ m gate length show a maximum available gain cutoff frequency ($f_{\text{sub max}}$) of 85 GHz and a current-gain cutoff frequency ($f_{\text{sub T}}$) of 22 GHz from S-parameter measurements. The 0.3- μ m devices show an $f_{\text{sub T}}$ of 45 GHz and an $f_{\text{sub max}}$ of 120 GHz. Bias-dependent equivalent circuit models are also discussed.

[Return to main document.](#)

Click on title for a complete paper.